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Correlation property of length sequences based on global structure of the complete genome
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This paper considers three kinds of length sequences of the complete genome. Detrended fluctuation analy-
sis, spectral analysis, and the mean distance spanned withiih. treeused to discuss the correlation property
of these sequences. The values of the exponents from these methods of these three kinds of length sequences
of bacteria indicate that the long-range correlations exist in most of these sequences. The correlations have a
rich variety of behaviors including the presence of anti-correlations. Furthermore, using the exponeasit
found that these correlations are all linegr={1.0+0.03). It is also found that these sequences exhilfit 1/
noise in some interval of frequency*1). The length of this interval of frequency depends on the length of
the sequence. The shape of the periodografifi exhibits some periodicity. The period seems to depend on
the length and the complexity of the length sequence.
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[. INTRODUCTION DNA sequence. It is therefore important to investigate the
degree of correlations in a model-independent way.

Recently, there has been considerable interest in the find- Since the first complete genome of the free-living bacte-
ing of long-range correlatioLRC) in DNA sequences rium Mycoplasma genitaliunwas sequenced in 19947],
[1-16]. Li et al.[1] found that the spectral density of a DNA an ever-growing number of complete genomes has been de-
sequence containing mostly introns shows$”1behavior, posited in public databases. The availability of complete ge-
which indicates the presence of LRC. The correlation propniomes induces the possibility to ask some global questions
erties of coding and noncoding DNA sequences were firsen these sequences. The avoided and under-represented
studied by Pengt al.[2] in their fractal landscape or DNA strings in some bacterial complete genomes have been dis-
walk model. The DNA walk defined if2] is that the walker ~cussed if18-20. A time series model of coding sequence
steps “up” if a pyrimidine C or T) occurs at positiori N complete genome has also been proposef®i Maria

along the DNA chain, while the walker steps “down” if a d& Sousa Vieird22] has done a low-frequency analysis of
purine (A or G) occurs at position. Penget al. [2] discov- complete DNA of 13 microbial genomes and showed that its

ered that there exists LRC in noncoding DNA sequencegaCtal behavior does not always prevail through the entire

whilethe coting sequences correspon 10 requar randof S &7 1l the auacorealon nctons bate & ich v
walk. By doing a more detailed analysis, Chatzidimitriou, y g P ’

. . For the importance of the numbers, sizes and ordering of
Dreismann gnd Larhamm4b] cgqcluded that both coding enes along the chromosome, one can refer to Part 5 of the
and noncoding sequences exhibit LRC. A subsequent wor,

. ; mous book of Lewin(Ref. [23]). Hence one may ignore
by Prabhu and Claverig6] also substantially corroborates composition of the four kinds of bases in coding and

these resu_lts. If_or!e_considers more de_:tails t_)y distinguishingoncodmg segments and only consider the rough structure of
C from T in pyrimidine, andA from G in purine (such as  the complete genome or long DNA sequences. Provata and
two- or three-dimensional DNA walk modé8] and maps  Almirantis [24] proposed a fractal Cantor pattern of DNA.
given in[9]), then the presence of base correlation has beefthey map coding segments to filled regions and noncoding
found even in coding sequences. In view of the controversgegments to empty regions of a random Cantor set and then
about the presence of correlation in all DNA or only in non-calculate the fractal dimension of the random fractal set.
coding DNA, Buldyrevet al.[14] showed the LRC appears They found that the coding/noncoding partition in DNA se-
mainly in noncoding DNA using all the DNA sequences quences of lower organisms is homogeneous-like, while in
available. Alternatively, Vos$10], based on equal-symbol the higher eucariotes the partition is fractal. This result seems
correlation, showed a power-law behavior for the sequence®o rough to distinguish bacteria because the fractal dimen-
studied regardless of the percent of intron contents. Investisions of bacteria they gave out are all the same. The classi-
gations based on different models seem to suggest differefitation and evolution relationship of bacteria is one of the
results, as they all look into only a certain aspect of the entirenost important problems in DNA research. Yu and ABB|
proposed a time series model based on the global structure of
the complete genome and considered three kinds of length
*Corresponding author. Email address: yuzg@hotmail.com osequences. After calculating the correlation dimensions and
z.yu@qut.edu.au Hurst exponents, it was found that one can get more infor-
TPermanent corresponding address of Zu-Guo Yu. mation from this model than that of the fractal Cantor pat-
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FIG. 1. An example to show how to do detrended fluctuation analftsift) To get the sequencg,(k). (Right) To get the exponent
using least-square linear fit.

tern. Some results on the classification and evolution relaX,,. is the average over the whole time period. Next, the
tionship of bacteria were found ifi25]. Naturally it is integrated time series is divided into boxes of equal length,
desirable to know if there exists LRC in these length sen. In each box of lengtn, a least-squares line is fit to the
guences. The quantification of these correlations could giveata, representing the trend in that box. Fheoordinate of
insight to the role of the ordering of genes on the chromo-+the straight line segments is denotedyhyk). We then de-
some, which is far from irrelevant for gene function. We trend the integrated time seriggk), by subtracting the local
attempt to answer this question in this paper. trend,y,(k), in each box. The root-mean-square fluctuation

Viewing from the level of structure, the complete genomeof this integrated and detrended time series is calculated as
of an organism is made up of coding and noncoding seg-
ments. Here the length of a coding/noncoding segment 1 N
means the number of its bases. Based on the lengths of F(n)= \/— 2 [y(K)—yn(k)]% (1)
coding/noncoding segments in the complete genome, we can N &=
get three kinds of integer sequences by the following ways. o ) ] ]

(i) First we order all lengths of coding and noncoding 'I_'yplca_\lly, F(n) will increase with b_ox_3|zen. A linear rela-
segments according to the order of coding and noncodin§onship on a double log graph indicates the presence of
segments in the complete genome, then replace the lengtR§aling
of noncoding segments by their negative numbers. This al-

lows to distinguish lengths of coding and noncoding seg- F(n)on®. 2
ments. This integer sequence is namedhole length - ] )
sequence Under such conditions, the fluctuations can be characterized

(i) We order all lengths of coding segments according td?y the scaling exponent, the slope of the line relating
the order of coding segments in the complete genome. Wk F(n) to Inn. For uncorrelated data, the integrated value
name this integer sequenceding length sequence y(k) corresponds to a random walk, and therefore,0.5. A

(iii ) We order all lengths of noncoding segments accordvalue of 0.5<a< 1.0 indicates the presence of LRC so that a
ing to the order of noncoding segments in the complete gelarge interval is more likely to be followed by a large interval
nome. This integer sequence is nameohcoding length andvice versa In contrast, 6« <0.5 indicates a different
sequence type of power-law correlations such that large and small val-

We can now view these three kinds of integer sequencedes of time series are more likely to alternate. For examples,
as time series. In the following, we will investigate the cor-we give the DFA of the coding length sequencefofaeoli-
relation property througtDetrended Fluctuation Analysis cusin Fig. 1.

(DFA) [26] and spectral analysis. Now we analyze the time series using the quaritfL ),
the mean distance a walker spanned within timeDunki
and Ambuhl[27,28 used this quantity to discuss the scaling

Il. DETRENDED FLUCTUATION ANALYSIS property in temporal patterns of schizophrenia. Denote
AND SPECTRAL ANALYSIS

_ ) . j
' We d'eno'te'a time series als(ta,t—l, ....N. First the W(j)==z [X(t) = Xapel, 3)
time series is integrated agk)=2_;[ X(t) —Xga,el], Where =1
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FIG. 2. (Left) To get the exponent’ using least-square linear f{Right) The analysis of coding length sequences of three bacteria using
mean distance a walker spanned within time

from which we get the walks leads to
M (L) =(|W() = W(j +L)]);, (4) M (L) =W/ () =W (+L)]); 6)
. ) Analyses of test time series showed that Eg). are more
where( ); denotes the average overandj=1,... N—L.  qp 5t against distortion or discretization of the correspond-

The time shiftL typically varies from 1... ,N/2. From a ing amplitudes X(t) than Eq. (4). From the Inl) vs
physics viewpointM (L) might be thought of as the variance |, (M’(L)) plane, we find the relation

evolution of a random walker’s total displacement mapped ’

from the time serieX(t). M(L) may be assessed for LRC M’ (L)ocL?. (7)
[29][e.g.,M (L)ocL“', a' =1/2 corresponding to the random

casd. We give some examples to estimate the scale param- | "€ €xponenty measures only the presence of nonlinear
etera’ in Fig. 2 correlations and remains equal to unity for all sequences with

Dunki et al. [28] proposed the following scale which only linear correlations. We carried out this kind of analysis

seems to perform better than the scale The definition on coding length sequences Af aeolicus, B. burgdorferi
andT. maritima The results are reported in the left figure of

i Fig. 3.
] - - .
W'(J)==Z IX(t) = Xapel (5) We also _conS|der_the discrete Founer transfdBa] of
=1 the time serie((t), t=1, ... N defined by
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FIG. 3. (Left) Estimate the scalg. (Right) An example of spectral analysis of low frequencfesl.
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TABLE I. ayholes @®cods @NdaponcoqOf 21 bacteria.

PHYSICAL REVIEW E 63011903

Bacteria Category Awhole cod Qnoncod
Rhizobium sp. NGR234 Proteobacteria 0.24759 0.11158 0.34342
Mycoplasma genitalium Gram-positive Eubacteria 0.37003 0.25374 0.18111
Chlamydia trachomatis Chlamydia 0.42251 0.37043 0.49373
Thermotoga maritima Hyperthermophilic bacteria 0.43314 0.47659 0.49279
Mycoplasma pneumoniae Gram-positive Eubacteria 0.44304 0.45208 0.49922
Pyrococcus abyssi Archaebacteria 0.48568 0.39271 0.42884
Helicobacter pylori J99 Proteobacteria 0.48770 0.43562 0.42089
Helicobacter pylori 26695 Proteobacteria 0.49538 0.37608 0.41374
Haemophilus influenzae Proteobacteria 0.49771 0.42432 0.53013
Rickettsia prowazekii Proteobacteria 0.49950 0.33089 0.51923
Chlamydia pneumoniae Chlamydia 0.53982 0.53615 0.38085
Methanococcus jannaschii Archaebacteria 0.54516 0.58380 0.34482
M. tuberculosis Gram-positive Eubacteria 0.55621 0.57479 0.52949
Aeropyrum pernix Archaebacteria 0.57817 0.63248 0.44829
Bacillus subtilis Gram-positive Eubacteria 0.58047 0.59221 0.54480
Borrelia burgdorferi Spirochaete 0.58258 0.53687 0.51815
Archaeoglobus fulgidus Archaebacteria 0.59558 0.59025 0.46596
Aquifex aeolicus Hyperthermophilic bacteria 0.59558 0.55964 0.43141
Escherichia coli Proteobacteria 0.60469 0.62011 0.52000
M. thermoautotrophicum Archaebacteria 0.62055 0.64567 0.38825
Treponema pallidum Spirochaete 0.67964 0.70297 0.60914

A N-1 _ 03 respectively. Hence we can see the data given by
X(f)=N"I2D> X(t+1)e 27t (8)  exponentsy anda’ are more convincing than that given by
=0 exponentg.
then
I1l. DATA AND RESULTS
S(f)=|X(f)[? )

More than 21 bacterial complete genomes are now avail-

is the power spectrum of §). In recent studies, it has been able in public databases. There are five Archaebactaria:

found[31] that many natural phenomena lead to the powe
spectrum of the form ff. This kind of dependence was
named 1f noise, in contrast to white nois¥f)=const, i.e.,

chaeoglobus fulgidugaful), Pyrococcus abyssipabyssi,
Methanococcus jannaschimjan), Aeropyrum pernixaerg
and Methanobacterium thermoautotrophicutmthe); four

Gram-positive Eubacteria:Mycobacterium tuberculosis
¢ (mtub), Mycoplasma pneumoniaémpney, Mycoplasma
rg‘,enitalium(mger), and Bacillus subtilis(bsub. The others
are Gram-negative Eubacteria. These consist of two Hyper-
thermophilic bacteriaAquifex aeolicugaquag¢ and Thermo-

ga maritima (tmar); six ProteobacteriaRhizobium sp.

GR234(pNGR234, Escherichia coli(ecoli), Haemophilus
influenzae(hinf), Helicobacter pylori J99hpyl99), Helico-
bacter pylori 26695hpyl) andRickettsia prowazekiirpxx);
two Chlamydia:Chlamydia trachomatigctra) and Chlamy-

(10 dia pneumoniae(cpney, and two SpirochaeteBorrelia
burgdorferi (bbun and Treponema pallidunttpal).

o o We calculate scalesa,a’,8 of low frequencies {<1)

wherex andy are the average of the valués;}!_, and and y of three kinds of length sequences of the above 21

{y;}"_, respectively. Ifr = =1, then the points lie exactly on bacteria. The estimated results are given in Tabl&Here

a straight line; that is, there is a perfect linear relationshipve denote byyneles @cods @Ndangncoqthe scales of DFA

betweerx andy. If r=0, there is no linear relationship. The of the whole, coding and noncoding length sequences, from

quantity r measures the strength of linear relationships betop to bottom, in the increasing order of the valuexgf,c).,

tweenx andy. The values of in figures of obtaining expo- Table Il [where we denote b¥,;01e, @eoq: @NAa;gncoqthe

nentsa, o', andg are 0.987 685, 0.994 993 9, and 3.791 8E-scales ofM (L) of the whole, coding and noncoding length

B=0. Let the frequencyf take k values f =k/N, k
=1,... N. From the In{) vs In(§f)) graph, the existence o
1/f8 does not seem apparent. For example, we give the figu
of the coding length sequence Af aeolicuson the right of
Fig. 3.

When we use the least squares line to fit data, we need
consider the errors. If the data dx;,y;)}{_,, we can de-
fine thecoefficient of linear correlatioras[32]

_ (X _;)(Yi —V)
\/(Einzl(xi _;)22{1:1()4 —V)Z ’

r
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TABLE Il. a{holer @eodr @NdaoncoqOf 21 bacteria.

Bacteria Category Ayhole @log Ahoncod
Rhizobium sp. NGR234 Proteobacteria 0.17021 0.11223 0.28573
Chlamydia trachomatis Chlamydia 0.172340 0.23801 0.66431
M. tuberculosis Gram-positive Eubacteria 0.20185 0.18451 0.43716
Mycoplasma genitalium Gram-positive Eubacteria 0.21632 0.25185 0.25971
Escherichia coli Proteobacteria 0.25837 0.24567 0.62126
Pyrococcus abyssi Archaebacteria 0.29809 0.18061 0.48169
Bacillus subtilis Gram-positive Eubacteria 0.36791 0.46816 0.55325
Mycoplasma pneumoniae Gram-positive Eubacteria 0.37148 0.46475 0.46829
Chlamydia pneumoniae Chlamydia 0.37216 0.26939 0.50734
Rickettsia prowazekii Proteobacteria 0.41040 0.23109 0.50930
Archaeoglobus fulgidus Archaebacteria 0.43149 0.35370 0.60835
Helicobacter pylori 26695 Proteobacteria 0.44082 0.38500 0.39325
Haemophilus influenzae Proteobacteria 0.46121 0.44842 0.34842
Aeropyrum pernix Archaebacteria 0.46203 0.45520 0.24850
M. thermoautotrophicum Archaebacteria 0.48038 0.48870 0.36249
Thermotoga maritima Hyperthermophilic bacteria 0.49453 0.50457 0.27005
Aquifex aeolicus Hyperthermophilic bacteria 0.50237 0.50582 0.31488
Helicobacter pylori J99 Proteobacteria 0.54547 0.50999 0.48640
Treponema pallidum Spirochaete 0.56357 0.56808 0.65350
Borrelia burgdorferi Spirochaete 0.61186 0.58016 0.61772
Methanococcus jannaschii Archaebacteria 0.72726 0.73384 0.33780

sequences, from top to bottom, in the increasing order of th803, 1538, 891 and 3034 respectively Fig. 4, where we
value ofay,,,d and Table Ill(where we denote bB,noe,  take k valuesf,=3k (k=1,...,1000) of the frequency.
Beod» and Broncog the scales of spectral analysis of the From Fig. 4, it is seen that the length of the interval of
whole, coding and noncoding length sequences, from top térequency in whictS(f) displays almost a perfect power-law
bottom, in the decreasing order of the value@fi,,; we  1/f depends on the length of the length sequence. The shorter
denote byyyhole: Yeod» @Nd Ynoncod the scales ofy of the  sequence corresponds to the larger interval.
whole, coding and noncoding length sequeihces From Fig. 4, one can see that the power spectrum exhibits
From the right figure of Fig. 3 it is seen th@tf) does not some kind of periodicity. But the period seems to depend on
display clear power-law 1/dependence on the frequencies the length of the sequence. We also guess that the period also
when f<1. Although the meaning of regioh>1 of the  depends on the complexity of the sequence. To support this
power spectrum is not clear, wheth®¢f) displays perfect conjecture, we got a promoter DNA sequence from the gene
power-law 1f in this region is important. When one consid- bank, then replaced by —2, C by —1, G by 1 andT by
ers the electrical characteristics of polysilicon emitter bipolar2 (this map is given i{9]); so we obtained a sequence on
transistors, for high frequency analog applications the tranalphabet{—2,—1,1,2}. Then a subsequence was obtained
sistor 1f noise is also an important parameter since it carith the length the same as the coding length sequencas of
degrade the spectral purity of the circ{®3]. There is also aeolicus, A. fulgidusand M. genitalium (their lengths are
some evidence that fLhoise spectral density in the low and 891, 1538 and 303 respectivilyA comparison is given in
in the high current region have a different physical origionFig. 5, but the results are not clear-cut.
(the reader can refer to R3] and reference thereinWe
want to know if there is another region of frequencies in IV. DISCUSSION AND CONCLUSIONS
which S(f) displays perfect power-law fl/dependence on ) ) )
the frequencies. We carried out the spectral analysisf for ~ Although the existence of the archaebacterial urkingdom
>1, and found tha®(f) displays almost a perfect power-law has been accepted by many biologists, the classification of
1/f dependence on the frequencies in some interval: bacteria is still a matter of controver§$4]. The evolution-
ary relationship of the three primary kingdorfi€., archea-
1 bacteria, eubacteria and eukaryoi® another crucial prob-
S(f)oc —. (11)  lem that remains unresolvg@4].
fA From Table I, we can roughly divide bacteria into two
classes, one class with,, e less than 0.5, and the other
We give the results for coding length sequenceMofjeni-  with a0 greater than 0.5. All Archaebacteria belong to
talium, A. fulgidus, A. aeolicuandE. coli (their lengths are the same class excepyrococcus abyssAll Proteobacteria
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belong to the same class excdpt coli; in particular, the

V. ANH, AND BIN WANG
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TABLE . Buwhotes Beods @A Bnoncods Ywholes Yeods @Nd ¥noncod Of 21 bacteria.

Bacteria Buwhole Beod Brnoncod Ywhole Ycod Ynoncod
M. genitalium 0.05880 0.02030 -0.00708 1.00017 0.99698 1.01652
H. pylori 26695 0.05026 -0.01412 0.01196 0.99902 1.00057 0.99538
M. jannaschii 0.04850 -0.02640 -0.12547 0.99727 0.99079 0.99767
C. pneumoniae 0.04405 0.01071 -0.01906 0.99998 1.00099 0.99348
A. aeolicus 0.03152 0.00811 -0.00115 1.00441 0.99816 0.99870
H. pylori J99 0.01968 0.04512 -0.05815 0.99867 0.99926 0.99349
T. maritima 0.00737 -0.02656 0.01965 0.99726 0.99524 0.98866
C. trachomatis 0.00256 -0.05829 -0.02549 0.99767 1.00211 0.98553
R. sp. NGR234 0.00230 0.04048 -0.10905 1.00570 0.99612 1.01515
M. thermoauto. -0.00217 -0.11916 0.02079 1.00479 1.00171 1.00063
T. pallidum -0.00422 -0.02902 0.09510 1.01009 1.01532 1.00222
M. pneumoniae -0.01137 0.03437 -0.05573 0.98820 0.98783 0.97260
P. abyssi -0.01589 -0.04242 0.00071 0.99888 0.99816 0.99293
E. coli -0.01917 -0.05513 0.01772 0.99856 1.00197 0.98938
M. tuberculosis -0.02653 -0.05653 -0.02698 1.00062 0.99974 1.00801
A. pernix -0.03882 0.01648 -0.09395 1.00298 1.00407 1.00286
B. burgdorferi -0.04420 -0.05189 -0.10710 0.99287 0.99792 1.03206
R. prowazekii -0.04884 -0.12438 -0.07581 1.00284 0.99043 0.99991
H. influenzae -0.05338 -0.04853 -0.04341 0.99798 1.00248 0.98684
A. fulgidus -0.06372 -0.08130 -0.00881 1.00347 1.00610 0.98219
B. subtilis -0.06887 -0.17231 -0.02380 0.99629 1.00853 0.98666

From Tables | and Il, we can see the similar rules as

closest Proteobacteria Helicobacter pylori 26695 and Helicoabove if we use the exponents,q and a;,4. This follows
bacter pylori J99 group with each other. In the class withthe fact that the coding sequences occupy the main part of

Awhole< 0.5, we havea,q< @noncoq €XCEPLH. pylori J99
and M. genitalium but in the other class we have;.q

= @noncod:

Using the exponen&’, we can also divide bacteria into
two class as in Table Il. In one clas&,4< @/ oncog- IN
another class, we have/,s> a/oncoq €XCEPt Treponema
pallidum and Borrelia burgdorferi Two Hyperthermophilic
bacteriaAquifex aeolicusand Thermotoga maritimagroup

!

space of the DNA chain of bacteria. This coincides with the
conclusion of Ref[25].

Although, from Table Ill, we can see the values of all
are not far from 0. From Figs. 1, 2, and 3, one can see
exponentsy anda’ are more convincing than the exponent
B because the error of estimatiagand a’ using the least-
squares linear fit is much less than that of the exponent
(the values of in figures of obtaining exponents, «', and

with each other. B are 0.987 685, 0.994 9939, and 3.791 8E-03 respecjively
55 T T T T T T 50 T T T T T T T
+ o+ ++++
50 X XXX X X XXX0000000800888 a5k Slope is ~1.4365 |
Slope is -1.1425
45
40+ 4
40l * b
R 2 351 ¥ i
XXX +
35 )Xx )E + +
= | 80 + J
B30 &
z £, ]
25 Slope is -1.3538 Slope is -8850
+ 20k XXX X ]
201
B . 4 5 1
1ok x ecoli R 10l § i
FEN 5
5 . L . . . . 5 . . . . . . .
1 2 3 4 [ 8 1 2 3 4 5 6 7 8 9

5
In(f)

FIG. 4. There exists 1/noise in the interval of >1.
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FIG. 5. Compare the power spectral of length sequences and DNA sequence§>when
From Tables | and Il, we can see most valuesxodnd o’ plays almost a perfect power-lawfldepends on the length

are not equal to 0.5, hence we can conclude that most ajf the length sequence. The shorter sequence corresponds to
these length sequences exhibit long-range correlations. We larger interval. The shape of the graph of power spectrum
can also see the correlations have a rich variety of behavioiig f>1 also exhibits some kind of periodicity. The period

including the presence of anti-correlations. Hence the lengtBeems to depend on the length and the complexity of the
sequences have the same character as the DNA sequenggsgth sequence.

[22]. Furthermore, from Table Ill, we gey=1.0+0.03.
Hence we can conclude that the long-range correlations that
exist in most length sequences are linear.

We find in an interval of frequencyf=1), S(f) dis-
plays perfect power-law i/dependence on the frequencies Z.G.Y. and B.W. would like to express their thanks to
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