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Correlation property of length sequences based on global structure of the complete genome
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This paper considers three kinds of length sequences of the complete genome. Detrended fluctuation analy-
sis, spectral analysis, and the mean distance spanned within timeL are used to discuss the correlation property
of these sequences. The values of the exponents from these methods of these three kinds of length sequences
of bacteria indicate that the long-range correlations exist in most of these sequences. The correlations have a
rich variety of behaviors including the presence of anti-correlations. Furthermore, using the exponentg, it is
found that these correlations are all linear (g51.060.03). It is also found that these sequences exhibit 1/f
noise in some interval of frequency (f .1). The length of this interval of frequency depends on the length of
the sequence. The shape of the periodogram inf .1 exhibits some periodicity. The period seems to depend on
the length and the complexity of the length sequence.
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I. INTRODUCTION

Recently, there has been considerable interest in the fi
ing of long-range correlation~LRC! in DNA sequences
@1–16#. Li et al. @1# found that the spectral density of a DN
sequence containing mostly introns shows 1/f b behavior,
which indicates the presence of LRC. The correlation pr
erties of coding and noncoding DNA sequences were
studied by Penget al. @2# in their fractal landscape or DNA
walk model. The DNA walk defined in@2# is that the walker
steps ‘‘up’’ if a pyrimidine (C or T) occurs at positioni
along the DNA chain, while the walker steps ‘‘down’’ if
purine (A or G) occurs at positioni. Penget al. @2# discov-
ered that there exists LRC in noncoding DNA sequen
while the coding sequences correspond to a regular ran
walk. By doing a more detailed analysis, Chatzidimitrio
Dreismann and Larhammar@5# concluded that both coding
and noncoding sequences exhibit LRC. A subsequent w
by Prabhu and Claverie@6# also substantially corroborate
these results. If one considers more details by distinguish
C from T in pyrimidine, andA from G in purine ~such as
two- or three-dimensional DNA walk model@8# and maps
given in @9#!, then the presence of base correlation has b
found even in coding sequences. In view of the controve
about the presence of correlation in all DNA or only in no
coding DNA, Buldyrevet al. @14# showed the LRC appear
mainly in noncoding DNA using all the DNA sequenc
available. Alternatively, Voss@10#, based on equal-symbo
correlation, showed a power-law behavior for the sequen
studied regardless of the percent of intron contents. Inve
gations based on different models seem to suggest diffe
results, as they all look into only a certain aspect of the en
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DNA sequence. It is therefore important to investigate
degree of correlations in a model-independent way.

Since the first complete genome of the free-living bac
rium Mycoplasma genitaliumwas sequenced in 1995@17#,
an ever-growing number of complete genomes has been
posited in public databases. The availability of complete
nomes induces the possibility to ask some global quest
on these sequences. The avoided and under-represe
strings in some bacterial complete genomes have been
cussed in@18–20#. A time series model of coding sequenc
in complete genome has also been proposed in@21#. Maria
de Sousa Vieira@22# has done a low-frequency analysis
complete DNA of 13 microbial genomes and showed that
fractal behavior does not always prevail through the en
chain, and that the autocorrelation functions have a rich
riety of behaviors including the presence of anti-correlatio

For the importance of the numbers, sizes and ordering
genes along the chromosome, one can refer to Part 5 o
famous book of Lewin~Ref. @23#!. Hence one may ignore
the composition of the four kinds of bases in coding a
noncoding segments and only consider the rough structur
the complete genome or long DNA sequences. Provata
Almirantis @24# proposed a fractal Cantor pattern of DNA
They map coding segments to filled regions and noncod
segments to empty regions of a random Cantor set and
calculate the fractal dimension of the random fractal s
They found that the coding/noncoding partition in DNA s
quences of lower organisms is homogeneous-like, while
the higher eucariotes the partition is fractal. This result see
too rough to distinguish bacteria because the fractal dim
sions of bacteria they gave out are all the same. The cla
fication and evolution relationship of bacteria is one of t
most important problems in DNA research. Yu and Anh@25#
proposed a time series model based on the global structu
the complete genome and considered three kinds of len
sequences. After calculating the correlation dimensions
Hurst exponents, it was found that one can get more in
mation from this model than that of the fractal Cantor p

r
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FIG. 1. An example to show how to do detrended fluctuation analysis.~Left! To get the sequenceyn(k). ~Right! To get the exponenta
using least-square linear fit.
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tern. Some results on the classification and evolution r
tionship of bacteria were found in@25#. Naturally it is
desirable to know if there exists LRC in these length
quences. The quantification of these correlations could g
insight to the role of the ordering of genes on the chrom
some, which is far from irrelevant for gene function. W
attempt to answer this question in this paper.

Viewing from the level of structure, the complete genom
of an organism is made up of coding and noncoding s
ments. Here the length of a coding/noncoding segm
means the number of its bases. Based on the length
coding/noncoding segments in the complete genome, we
get three kinds of integer sequences by the following wa

~i! First we order all lengths of coding and noncodi
segments according to the order of coding and noncod
segments in the complete genome, then replace the len
of noncoding segments by their negative numbers. This
lows to distinguish lengths of coding and noncoding s
ments. This integer sequence is namedwhole length
sequence.

~ii ! We order all lengths of coding segments according
the order of coding segments in the complete genome.
name this integer sequencecoding length sequence.

~iii ! We order all lengths of noncoding segments acco
ing to the order of noncoding segments in the complete
nome. This integer sequence is namednoncoding length
sequence.

We can now view these three kinds of integer sequen
as time series. In the following, we will investigate the co
relation property throughDetrended Fluctuation Analysi
~DFA! @26# and spectral analysis.

II. DETRENDED FLUCTUATION ANALYSIS
AND SPECTRAL ANALYSIS

We denote a time series asX(t),t51, . . . ,N. First the
time series is integrated asy(k)5( t51

k @X(t)2Xave#, where
01190
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Xave is the average over the whole time period. Next, t
integrated time series is divided into boxes of equal leng
n. In each box of lengthn, a least-squares line is fit to th
data, representing the trend in that box. They coordinate of
the straight line segments is denoted byyn(k). We then de-
trend the integrated time series,y(k), by subtracting the loca
trend,yn(k), in each box. The root-mean-square fluctuati
of this integrated and detrended time series is calculated

F~n!5A1

N (
k51

N

@y~k!2yn~k!#2. ~1!

Typically, F(n) will increase with box sizen. A linear rela-
tionship on a double log graph indicates the presence
scaling

F~n!}na. ~2!

Under such conditions, the fluctuations can be character
by the scaling exponenta, the slope of the line relating
ln F(n) to lnn. For uncorrelated data, the integrated val
y(k) corresponds to a random walk, and therefore,a50.5. A
value of 0.5,a,1.0 indicates the presence of LRC so tha
large interval is more likely to be followed by a large interv
and vice versa. In contrast, 0,a,0.5 indicates a different
type of power-law correlations such that large and small v
ues of time series are more likely to alternate. For examp
we give the DFA of the coding length sequence ofA. aeoli-
cus in Fig. 1.

Now we analyze the time series using the quantityM (L),
the mean distance a walker spanned within timeL. Dunki
and Ambuhl@27,28# used this quantity to discuss the scalin
property in temporal patterns of schizophrenia. Denote

W~ j !ª(
t51

j

@X~ t !2Xave#, ~3!
3-2
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FIG. 2. ~Left! To get the exponenta8 using least-square linear fit.~Right! The analysis of coding length sequences of three bacteria u
mean distance a walker spanned within timeL.
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from which we get the walks

M ~L !ª^uW~ j !2W~ j 1L !u& j , ~4!

where^ & j denotes the average overj, and j 51, . . . ,N2L.
The time shiftL typically varies from 1, . . . ,N/2. From a
physics viewpoint,M (L) might be thought of as the varianc
evolution of a random walker’s total displacement mapp
from the time seriesX(t). M (L) may be assessed for LR
@29# @e.g.,M (L)}La8, a851/2 corresponding to the random
case#. We give some examples to estimate the scale par
etera8 in Fig. 2.

Dunki et al. @28# proposed the following scale whic
seems to perform better than the scalea8. The definition

W8~ j !ª(
t51

j

uX~ t !2Xaveu ~5!
01190
d

-

leads to

M 8~L !ª^uW8~ j !2W8~ j 1L !u& j . ~6!

Analyses of test time series showed that Eq.~6! are more
robust against distortion or discretization of the correspo
ing amplitudes X(t) than Eq. ~4!. From the ln(L) vs
ln „M 8(L)… plane, we find the relation

M 8~L !}Lg. ~7!

The exponentg measures only the presence of nonline
correlations and remains equal to unity for all sequences w
only linear correlations. We carried out this kind of analys
on coding length sequences ofA. aeolicus, B. burgdorferi
andT. maritima. The results are reported in the left figure
Fig. 3.

We also consider the discrete Fourier transform@30# of
the time seriesX(t), t51, . . . ,N defined by
FIG. 3. ~Left! Estimate the scaleg. ~Right! An example of spectral analysis of low frequenciesf ,1.
3-3
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TABLE I. awhole, acod , andanoncod of 21 bacteria.

Bacteria Category awhole acod anoncod

Rhizobium sp. NGR234 Proteobacteria 0.24759 0.11158 0.34
Mycoplasma genitalium Gram-positive Eubacteria 0.37003 0.25374 0.18
Chlamydia trachomatis Chlamydia 0.42251 0.37043 0.493
Thermotoga maritima Hyperthermophilic bacteria 0.43314 0.47659 0.49
Mycoplasma pneumoniae Gram-positive Eubacteria 0.44304 0.45208 0.4
Pyrococcus abyssi Archaebacteria 0.48568 0.39271 0.42
Helicobacter pylori J99 Proteobacteria 0.48770 0.43562 0.42
Helicobacter pylori 26695 Proteobacteria 0.49538 0.37608 0.41
Haemophilus influenzae Proteobacteria 0.49771 0.42432 0.53
Rickettsia prowazekii Proteobacteria 0.49950 0.33089 0.51

Chlamydia pneumoniae Chlamydia 0.53982 0.53615 0.38
Methanococcus jannaschii Archaebacteria 0.54516 0.58380 0.3
M. tuberculosis Gram-positive Eubacteria 0.55621 0.57479 0.52
Aeropyrum pernix Archaebacteria 0.57817 0.63248 0.448
Bacillus subtilis Gram-positive Eubacteria 0.58047 0.59221 0.54
Borrelia burgdorferi Spirochaete 0.58258 0.53687 0.518
Archaeoglobus fulgidus Archaebacteria 0.59558 0.59025 0.46
Aquifex aeolicus Hyperthermophilic bacteria 0.59558 0.55964 0.43
Escherichia coli Proteobacteria 0.60469 0.62011 0.52
M. thermoautotrophicum Archaebacteria 0.62055 0.64567 0.38
Treponema pallidum Spirochaete 0.67964 0.70297 0.60
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X̂~ f !5N2(1/2)(
t50

N21

X~ t11!e22p i f t , ~8!

then

S~ f !5uX̂~ f !u2 ~9!

is thepower spectrum of X(t). In recent studies, it has bee
found @31# that many natural phenomena lead to the pow
spectrum of the form 1/f b. This kind of dependence wa
named 1/f noise, in contrast to white noiseS( f )5const, i.e.,
b50. Let the frequencyf take k values f k5k/N, k
51, . . . ,N. From the ln(f) vs ln(S(f)) graph, the existence o
1/f b does not seem apparent. For example, we give the fig
of the coding length sequence ofA. aeolicuson the right of
Fig. 3.

When we use the least squares line to fit data, we nee
consider the errors. If the data are$(xi ,yi)% i 51

n , we can de-
fine thecoefficient of linear correlationas @32#

r 5
( i 51

n ~xi2 x̄!~yi2 ȳ!

A~( i 51
n ~xi2 x̄!2( i 51

n ~yi2 ȳ!2
, ~10!

where x̄ and ȳ are the average of the values$xi% i 51
n and

$yi% i 51
n respectively. Ifr 561, then the points lie exactly on

a straight line; that is, there is a perfect linear relations
betweenx andy. If r 50, there is no linear relationship. Th
quantity r measures the strength of linear relationships
tweenx andy. The values ofr in figures of obtaining expo-
nentsa, a8, andb are 0.987 685, 0.994 993 9, and 3.791 8
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03 respectively. Hence we can see the data given
exponentsa anda8 are more convincing than that given b
exponentb.

III. DATA AND RESULTS

More than 21 bacterial complete genomes are now av
able in public databases. There are five Archaebacteria:Ar-
chaeoglobus fulgidus~aful!, Pyrococcus abyssi~pabyssi!,
Methanococcus jannaschii~mjan!, Aeropyrum pernix~aero!
and Methanobacterium thermoautotrophicum~mthe!; four
Gram-positive Eubacteria:Mycobacterium tuberculosis
~mtub!, Mycoplasma pneumoniae~mpneu!, Mycoplasma
genitalium ~mgen!, and Bacillus subtilis~bsub!. The others
are Gram-negative Eubacteria. These consist of two Hyp
thermophilic bacteria:Aquifex aeolicus~aquae! andThermo-
toga maritima ~tmar!; six Proteobacteria:Rhizobium sp.
NGR234~pNGR234!, Escherichia coli~ecoli!, Haemophilus
influenzae~hinf!, Helicobacter pylori J99~hpyl99!, Helico-
bacter pylori 26695~hpyl! andRickettsia prowazekii~rpxx!;
two Chlamydia:Chlamydia trachomatis~ctra! and Chlamy-
dia pneumoniae~cpneu!, and two Spirochaete:Borrelia
burgdorferi ~bbur! andTreponema pallidum~tpal!.

We calculate scalesa,a8,b of low frequencies (f ,1)
and g of three kinds of length sequences of the above
bacteria. The estimated results are given in Table I~where
we denote byawhole, acod , andanoncod the scales of DFA
of the whole, coding and noncoding length sequences, f
top to bottom, in the increasing order of the value ofawhole),
Table II @where we denote byawhole8 , acod8 , andanoncod8 the
scales ofM (L) of the whole, coding and noncoding leng
3-4



573
431
716
971

126
169

325
6829
734
930
835
325

842
50
249
005
488
640
350
72

3780

CORRELATION PROPERTY OF LENGTH SEQUENCES . . . PHYSICAL REVIEW E 63 011903
TABLE II. awhole8 , acod8 , andanoncod8 of 21 bacteria.

Bacteria Category awhole8 acod8 anoncod8

Rhizobium sp. NGR234 Proteobacteria 0.17021 0.11223 0.28
Chlamydia trachomatis Chlamydia 0.172340 0.23801 0.66
M. tuberculosis Gram-positive Eubacteria 0.20185 0.18451 0.43
Mycoplasma genitalium Gram-positive Eubacteria 0.21632 0.25185 0.25
Escherichia coli Proteobacteria 0.25837 0.24567 0.62
Pyrococcus abyssi Archaebacteria 0.29809 0.18061 0.48
Bacillus subtilis Gram-positive Eubacteria 0.36791 0.46816 0.55
Mycoplasma pneumoniae Gram-positive Eubacteria 0.37148 0.46475 0.4
Chlamydia pneumoniae Chlamydia 0.37216 0.26939 0.50
Rickettsia prowazekii Proteobacteria 0.41040 0.23109 0.50
Archaeoglobus fulgidus Archaebacteria 0.43149 0.35370 0.60
Helicobacter pylori 26695 Proteobacteria 0.44082 0.38500 0.39

Haemophilus influenzae Proteobacteria 0.46121 0.44842 0.34
Aeropyrum pernix Archaebacteria 0.46203 0.45520 0.248
M. thermoautotrophicum Archaebacteria 0.48038 0.48870 0.36
Thermotoga maritima Hyperthermophilic bacteria 0.49453 0.50457 0.27
Aquifex aeolicus Hyperthermophilic bacteria 0.50237 0.50582 0.31
Helicobacter pylori J99 Proteobacteria 0.54547 0.50999 0.48
Treponema pallidum Spirochaete 0.56357 0.56808 0.65
Borrelia burgdorferi Spirochaete 0.61186 0.58016 0.617
Methanococcus jannaschii Archaebacteria 0.72726 0.73384 0.3
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sequences, from top to bottom, in the increasing order of
value ofawhole8 ] and Table III~where we denote bybwhole,
bcod , and bnoncod the scales of spectral analysis of th
whole, coding and noncoding length sequences, from to
bottom, in the decreasing order of the value ofbwhole; we
denote bygwhole, gcod , andgnoncod the scales ofg of the
whole, coding and noncoding length sequences!.

From the right figure of Fig. 3 it is seen thatS( f ) does not
display clear power-law 1/f dependence on the frequenci
when f ,1. Although the meaning of regionf .1 of the
power spectrum is not clear, whetherS( f ) displays perfect
power-law 1/f in this region is important. When one consi
ers the electrical characteristics of polysilicon emitter bipo
transistors, for high frequency analog applications the tr
sistor 1/f noise is also an important parameter since it c
degrade the spectral purity of the circuit@33#. There is also
some evidence that 1/f noise spectral density in the low an
in the high current region have a different physical origi
~the reader can refer to Ref.@33# and reference therein!. We
want to know if there is another region of frequencies
which S( f ) displays perfect power-law 1/f dependence on
the frequencies. We carried out the spectral analysis fof
.1, and found thatS( f ) displays almost a perfect power-la
1/f dependence on the frequencies in some interval:

S~ f !}
1

f b
. ~11!

We give the results for coding length sequences ofM. geni-
talium, A. fulgidus, A. aeolicusandE. coli ~their lengths are
01190
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303, 1538, 891 and 3034 respectively! in Fig. 4, where we
take k values f k53k (k51, . . .,1000) of the frequencyf.
From Fig. 4, it is seen that the length of the interval
frequency in whichS( f ) displays almost a perfect power-la
1/f depends on the length of the length sequence. The sh
sequence corresponds to the larger interval.

From Fig. 4, one can see that the power spectrum exh
some kind of periodicity. But the period seems to depend
the length of the sequence. We also guess that the period
depends on the complexity of the sequence. To support
conjecture, we got a promoter DNA sequence from the g
bank, then replacedA by 22, C by 21, G by 1 andT by
2 ~this map is given in@9#!; so we obtained a sequence o
alphabet$22,21,1,2%. Then a subsequence was obtain
with the length the same as the coding length sequencesA.
aeolicus, A. fulgidusand M. genitalium ~their lengths are
891, 1538 and 303 respectively!. A comparison is given in
Fig. 5, but the results are not clear-cut.

IV. DISCUSSION AND CONCLUSIONS

Although the existence of the archaebacterial urkingd
has been accepted by many biologists, the classificatio
bacteria is still a matter of controversy@34#. The evolution-
ary relationship of the three primary kingdoms~i.e., archea-
bacteria, eubacteria and eukaryote! is another crucial prob-
lem that remains unresolved@34#.

From Table I, we can roughly divide bacteria into tw
classes, one class withawhole less than 0.5, and the othe
with awhole greater than 0.5. All Archaebacteria belong
the same class exceptPyrococcus abyssi. All Proteobacteria
3-5
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TABLE III. bwhole, bcod , andbnoncod; gwhole, gcod , andgnoncod of 21 bacteria.

Bacteria bwhole bcod bnoncod gwhole gcod gnoncod

M. genitalium 0.05880 0.02030 -0.00708 1.00017 0.99698 1.016
H. pylori 26695 0.05026 -0.01412 0.01196 0.99902 1.00057 0.995
M. jannaschii 0.04850 -0.02640 -0.12547 0.99727 0.99079 0.997
C. pneumoniae 0.04405 0.01071 -0.01906 0.99998 1.00099 0.99
A. aeolicus 0.03152 0.00811 -0.00115 1.00441 0.99816 0.998
H. pylori J99 0.01968 0.04512 -0.05815 0.99867 0.99926 0.993
T. maritima 0.00737 -0.02656 0.01965 0.99726 0.99524 0.988
C. trachomatis 0.00256 -0.05829 -0.02549 0.99767 1.00211 0.98
R. sp. NGR234 0.00230 0.04048 -0.10905 1.00570 0.99612 1.01
M. thermoauto. -0.00217 -0.11916 0.02079 1.00479 1.00171 1.00
T. pallidum -0.00422 -0.02902 0.09510 1.01009 1.01532 1.002
M. pneumoniae -0.01137 0.03437 -0.05573 0.98820 0.98783 0.97
P. abyssi -0.01589 -0.04242 0.00071 0.99888 0.99816 0.99
E. coli -0.01917 -0.05513 0.01772 0.99856 1.00197 0.989
M. tuberculosis -0.02653 -0.05653 -0.02698 1.00062 0.99974 1.00
A. pernix -0.03882 0.01648 -0.09395 1.00298 1.00407 1.002
B. burgdorferi -0.04420 -0.05189 -0.10710 0.99287 0.99792 1.032
R. prowazekii -0.04884 -0.12438 -0.07581 1.00284 0.99043 0.999
H. influenzae -0.05338 -0.04853 -0.04341 0.99798 1.00248 0.98
A. fulgidus -0.06372 -0.08130 -0.00881 1.00347 1.00610 0.982
B. subtilis -0.06887 -0.17231 -0.02380 0.99629 1.00853 0.986
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belong to the same class exceptE. coli; in particular, the
closest Proteobacteria Helicobacter pylori 26695 and Hel
bacter pylori J99 group with each other. In the class w
awhole,0.5, we haveacod,anoncod exceptH. pylori J99
and M. genitalium; but in the other class we haveacod
.anoncod.

Using the exponenta8, we can also divide bacteria int
two class as in Table II. In one class,acod8 ,anoncod8 . In
another class, we haveacod8 .anoncod8 except Treponema
pallidum and Borrelia burgdorferi. Two Hyperthermophilic
bacteriaAquifex aeolicusand Thermotoga maritimagroup
with each other.
01190
-
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From Tables I and II, we can see the similar rules
above if we use the exponentsacod andacod8 . This follows
the fact that the coding sequences occupy the main pa
space of the DNA chain of bacteria. This coincides with t
conclusion of Ref.@25#.

Although, from Table III, we can see the values of allb
are not far from 0. From Figs. 1, 2, and 3, one can s
exponentsa anda8 are more convincing than the expone
b because the error of estimatinga anda8 using the least-
squares linear fit is much less than that of the exponenb
~the values ofr in figures of obtaining exponentsa, a8, and
b are 0.987 685, 0.994 993 9, and 3.791 8E-03 respective!.
FIG. 4. There exists 1/f noise in the interval off .1.
3-6
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FIG. 5. Compare the power spectral of length sequences and DNA sequences whenf .1.
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From Tables I and II, we can see most values ofa anda8
are not equal to 0.5, hence we can conclude that mos
these length sequences exhibit long-range correlations.
can also see the correlations have a rich variety of behav
including the presence of anti-correlations. Hence the len
sequences have the same character as the DNA sequ
@22#. Furthermore, from Table III, we getg51.060.03.
Hence we can conclude that the long-range correlations
exist in most length sequences are linear.

We find in an interval of frequency (f .1), S( f ) dis-
plays perfect power-law 1/f dependence on the frequenci
~see Fig. 4!:

S~ f !}
1

f b
.

The length of the interval of frequency in whichS( f ) dis-
01190
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plays almost a perfect power-law 1/f depends on the length
of the length sequence. The shorter sequence correspon
the larger interval. The shape of the graph of power spect
in f .1 also exhibits some kind of periodicity. The perio
seems to depend on the length and the complexity of
length sequence.
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